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J. Phys. A:  Math. Gen. 16 (1983) 133-145. Printed in Great Britain 

Infinity subtraction in a quantum field theory of charges 
and monopoles? 

C Panagiotakopoulos 
International Centre for Theoretical Physics, Trieste, Italy 

Received 19 May 1982 

Abstract. Subtraction of ultraviolet infinities in Zwanziger’s local quantum field theory 
of charges and monopoles is described. It involves an infinite number of graphs. The 
whole programme rests on the assumption that the infinite summations involved do not 
give rise to pathological situations and the Ward identities are satisfied even after the 
string cancellations. The resulting finite theory is Lorentz invariant. 

1. Introduction 

About ten years ago Zwanziger (1971) presented a local Lagrangian density for the 
quantum field theory of charges and monopoles. Unfortunately, as always happens 
with Dirac monopoles, this Lagrangian density depends on an arbitrary but fixed 
four-vector, say n,, the remnant of the old ‘Dirac string’ (Dirac 1948). Brandt er a1 
(1979) gave a proof that full Green functions of gauge-invariant operators are 
n -independent, if Dirac’s (1931) quantisation condition 

1 
eig;/4x = mi nj;=o, *l, *2 , .  . . 

between the electric and magnetic charges ei, g, is satisfied. A gauge-invariant regulari- 
sation of this quantum field theory also exists, in the presence of which the proof of 
n independence can be repeated (Panagiotakopoulos 1982). 

As has been emphasised (Panagiotakopoulos 1982) the existence of these regulators 
guarantees the n independence of the finite Green functions that might result after 
any reasonable subtraction, provided that such a subtraction scheme can be found. 
By reasonable subtraction we mean any subtraction that does not introduce an n 
dependence in the finite subtracted Green functions. The purpose of the present work 
is to investigate the existence of such a subtraction. 

The whole discussion is carried out in the context of the standard LSZ reduction 
formula which has been used as a guide to the correct renormalisation of the parameters 
of the theory. Also, the result of n independence of the renormalised S matrix is 
only valid if the standard reduction is used. However, it should be emphasised that 
the LSZ formulation does not take into account the long-range nature of the electromag- 
netic interaction. This long-range nature, if not taken care of properly, manifests 
itself in infrared divergences. The long-range monopole-electron interaction is also 
known (Zwanziger 1972) to give rise to an n-dependent phase factor which reflects 

i Talk given at the meeting on ‘Monopoles in Quantum Field Theory‘, ICTP, Trieste, 11-15 December 1981. 
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134 C Panagiotakopoulos 

the non-scalar nature of the S matrix in this theory. At this stage we can only hope 
that our treatment of the ultraviolet problem will not be invalidated by a complete 
treatment of the infrared one (BlagojeviE and SenjanoviE 1981, BlagojeviE et a1 
1982). If a complete treatment of the long-range interaction does give rise to the 
n -dependent phase factor mentioned above this will not invalidate our claim of Lorentz 
invariance of the theory since this phase is not observable. 

In the use of the LSZ formulation the assumption of the existence of free asymptotic 
states is inherent. This means that we assume the existence of an n-independent pole 
(or branch point) in the full fermion propagators. (Indeed if such a pole does not 
exist the theory would contain only confined states and so the study of scattering 
experiments would not make sense and our discussion would be futile.) 

We will confine ourselves to the case of a spin-; electrically charged particle with 
charge e and a spin-; monopole with magnetic charge g. We will see that for the 
non-gauge-invariant fields it is the on-shell S matrix elements that are n -independent 
(Lorentz invariant). Then we will discuss the vacuum polarisation and charge, 
wavefunction and vertex renormalisation to all orders. Then a subtraction to all orders 
is described and the finiteness of the resulting theory is discussed. We also comment 
on the complications that arise when we renormalise the charges because of the 
quantisation condition. Later, a formal expansion in closed particle loops is described 
and its subtraction along the same lines is discussed. Finally we make some remarks 
stressing the assumptions made, the cases not discussed and possible work that can 
be done using a lattice version of Zwanziger’s action that is proposed. 

2. Definition of the theory 

The manifestly local Zwanziger action with the inclusion of a gauge-fixing term and 
matter fields is 

s=s,+sz (2.1) 
with 

SI = -; I d4x {[ n (a A A ) ]  * [n  * (a A B ) d ]  + [n * (a A A ) I 2  

- [a(n A ) ] ’ +  ( A  + B,  B + - A ) )  
and 

Sr = 1 I d4x &(id - mi - eiX - giS)$, i = l , 2  
I 

where A ,  and B ,  are independent vector potentials, n, an arbitrary but fixed four- 
vector with n2  = 1, and is an electrically (magnetically) charged spin-; matter 
field with electric (magnetic) charge e l  = e (g2 = g), magnetic (electric) charge g1 = 0 
( e 2 = O )  and mass ml(m2). The notation suppresses Lorentz indices, e.g., the scalar 
product of two four-vectors a’” and b ,  is denoted a * b, a ~b means a,b, -a,b, and 
for a second-rank tensor F,, the symbol F F means F,,,F’”. Also F:” = ;E ,ypvFPa 
is the dual of F,”. 

Variation of A and B gives the correct Maxwell equations and also the gauge-fixing 
equations 

a2n - A = a2n B = 0. (2.4) 
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Variation of the charged fields gives the correct equations 

(id - m, - e,& - g , 8 ) 9 ,  = 0. (2.5) 

With the notation V i  =A,, V:  = B, and e l2  = - E * ~  - - 1, the free ( e ,  = g, = 0) 
propagators of the gauge fields can be written compactly in momentum space as 
(Zwanziger 1971) 

D $ ( k ) = l  d4x exp(ik *x)(OlTV~(x)VbY(O)lO) 

(2.6) 

The non-covariant perturbation expansion that results from these propagators and 
the Feynman rules as read off directly from the Lagrangian can be shown to be unitary 
and consistent with the Faddeev-Popov formalism (Brandt and Neri 1978). 

3. Proof of II independence of the S matrix 

It is known that full Green functions of gauge-invariant operators, like the currents, 
are n -independent (Brandt el a1 1979). The same is not true for full Green functions 
of gauge-non-invariant operators, for example, & and Ji. What holds in this case is 
that the corresponding S matrix elements are n -independent. Details concerning the 
steps of the proof that are common to the one for Green functions of gauge-invariant 
operators can be found in the paper of Brandt et a1 (1979). Here we will only stress 
the differences. 

We introduce into the generating functional of Green functions source terms for 
the spinor fields. It is essential for the proof that these source terms be gauge invariant. 
Such a gauge-invariant source is the path-dependent source (see, for example, 't Hooft 
1976) 

where the integration is taken along a line from - 00 to the point x. This source emits 
only single particles in lowest order and additional photons in higher order. These 
new couplings of the source contribute only to external line renormalisations and not 
to the S matrix. We integrate out the spinor fields in the generating functional W,,(J@O 
and we express the result as a functional integral over classical particle paths. We 
make a change of variables from the Zwanziger classical particle action to the 
Schwinger-Yan non-local classical particle action. Jt is at this stage that the gauge 
invariance of the source is needed. Only if we integrate gauge-invariant quantities 
can the change of variables in the path integral be done without complications (Brandt 
and Neri 1978). After that we perform the change of integration variable A + A  +a& 
where ah is a singular function depending on n and such that the gauge transformation 
A + A  + ah in the Schwinger-Yan action is equivalent to  the change n + n' .  Then we 
move the 'string' n to n ' .  Using the invariance of the dA measure under the change 
A + A  +ah we see that W,,f(J'i) differs from W,,(JG8) only in effective couplings of the 
source with the gauge and spinor fields depending on n .  When we cut the external 
legs, according to the standard reduction procedure, from the graphs that these new 
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couplings give rise to, only those contributions survive which have a pole in the physical 
mass of the 9i. So the wavefunction renormalisation constant of +bi depends on n but 
not the S matrix. This in particular has as a consequence that when P +  mi (physical) 
the full qbi propagator has the form 

Z z ( n  ' 1  + regular terms 
F - m ,  (3.2) 

where the wavefunction renormalisation Zzi depends on n . The situation is parallel 
to the gauge dependence of Z 2  in ordinary gauge theories. 

The introduction of the regulators of Panagiotakopoulos (1982) does not change 
anything. 

4. Regularisation 

The easiest regulators (Panagiotakopoulos 1982) to work with give the ( A A )  and 
(BB)  propagators multiplied by 

(1 + k2/A2 f k4/A4)-' 

where A is a cut-off parameter with the dimensions of mass and the mixed propagator, 
unregularised, in combination with Gupta regulators (auxiliary matter fields some of 
which obey the wrong statistics) for closed particle loops. They are sufficient. With 
these regulators everything we say can be repeated in their presence, since they do 
not introduce any complicated new n -dependence. The more complicated regulators 
that also regularise the mixed propagator are very difficult to work with; but since 
they render the theory finite and keep the proof of n independence their use presents 
no problem. With them of course the expressions that we will obtain will be much 
more complicated and extra spurious n dependence will appear. This extra n depen- 
dence, however, should not be regarded as invalidating the arguments based on n 
cancellation. These extra n -dependent terms disappear when the cut-off goes to 
infinity and obviously cannot cancel any n in the original theory (unless something 
pathological happens when we sum the infinite series of terms to all orders). So 
although we will present arguments using the unregularised form of the theory the 
presence of regulators will always be understood. 

5. Vacuum polarisation 

Let us first use the theorem of n independence of the full Green functions of the 
electric and magnetic current (J, and K ,  respectively) in order to find the form of the 
full gauge boson propagators. The full Green function of two electric currents 
( T ( J J V ) )  represented by 

U V 

is of the form i(g,,k2- k,k,)C(k2) using the gauge invariance and n independence to 
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all orders. The full Green function of two magnetic currents (T(K,K,))  represented 
by 

is of the form i(g&2-k,k.)D(k2) for the same reasons. The same holds for the full 
Green function of one electric and one magnetic current (T(J,K,))  represented by 

and having the form i(g,,,k2-k,k,)F(k2). The scalar functions C, D and F do not 
depend on n. The external legs are amputated everywhere. 

The full (AA) propagator denoted DktA takes the contributions 

+ wvL--*--‘vv: 
!J wv = $ +!J- P 

+ w - - / v \ J ; :  P + fVv---* Lf (5.1) 

where the external legs are not amputated. Because of current conservation the terms 
proportional to k ,  in the expressions of the blobs can be dropped. The last two terms 
cancel each other since the mixed propagator is antisymmetric in its free indices and 
even in k,(momentum), and (T(J,K,))  is symmetric in p and v and even in k,(momen- 
tum). The first three terms give 

= -&E (1 + c(k2) + D ( k 2 ) )  D(k2)  k 2  (n k)’ (5.2) 

where TFy = g,, - n,n,,. Terms proportional to k, have been dropped. The same steps 
give 

D;BYB = - g,, ( 1  + C ( k  ’) + D ( k  ’)) + -!k C ( k  ’) 
k 2  (n  k ) 2  (5.3) 

We see that the full (AA) and ( B B )  propagators are string dependent and not 
multiplicatively renormalisable. This makes obvious the fact that the theory cannot 
be perturbatively renormalisable in the strict sense, i.e. without introduction of 
counterterms of a different form from the terms originally present. The trouble in 
this case is that if we put even a finite number of counterterms of different form from 
the original terms the theory stops being Lorentz invariant to all orders. So unless 
the string-dependent terms effectively dishppear the theory cannot be subtracted. 

A problem related to the string dependence of the full (AA)  and (BB)  propagators 
is the definition of the screening of electric and magnetic charges due to vacuum 
polarisation. This screening is a physical process and should not be string dependent. 
The best candidate for the object corresponding to the usual 2, of QED is the 
(1 + C +D) multiplying the g,, term of both propagators at k2  = 0. If we justify this 
choice properly we will have proved in a new, probably much easier, way the result 
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obtained by Schwinger (1966) that the electric and magnetic charges acquire the same 
renormalisation due to vacuum polarisation. In fact Schwinger proved this result 
under a stronger quantisation condition for the charges (which would allow the change 
of the position of the string) and assuming that the string is not parallel to the line 
connecting them. Here, in contrast, we make use of the string independence of the 
theory. 

Consider the sum of all graphs to all orders contributing to a physical process, e.g. 
e-e scattering, with all external legs cut according to the reduction formula, and on- 
shell. According to the theorem proved in § 3 this sum is n independent. Since we 
consider the sum of graphs to all orders we can replace every gauge boson propagator 
by a full propagator. Then each (AA)  and (BB)  propagator has the form given above. 
The string bit will cancel according to the theorem and the full propagator will be 
effectively proportional to g F Y .  In fact this is correct, we believe, given that there 
seems to be no possibility of a remainder from the terms containing the combination 
T,J(n k)’ surviving. This is so since there are no n, in the numerator anywhere in 
the expressions for the graphs except in terms containing a Levi-Civita tensor. But 
there, for each n in the numerator there is an n in the denominator and so no n 
excess. Two E,YP,gzDkf f  can be contracted, but in this case they give exactly the 
combination T,,,/(n k)’ .  After all it is from this kind of contraction that this 
combination was initially created. One could argue that if we do not see n,n, as being 
always associated with a g,,, free n’s exist in the numerator. Doing calculations of this 
kind we cannot reach any conclusion. We can only make the problem impossible. 
The correct way to see it is to recognise that g,J(n k)’ cannot be cancelled leaving 
an n-independent remnant and, since n,n,/(n * k)’ always appears with g,,,/(n k)’ ,  
it must be also cancelled completely. The only source of danger seems to be the 
summation of an infinite number of terms. We make what we believe to be a reasonable 
assumption that nothing pathological will happen when we sum all these terms. So 
the full (AA)  and (BB)  propagators are effectively the same which means that they 
are multiplicatively renormalisable. 

We define Z 3  = 1 + C(0)  + D(0).  We also define renormalised (AA) and (BB)  
propagators by 

DkAA = D;tA/Z3 DkB,”Y = D:B,B/Z3 (5.4) 

and renormalised charges by 

Jze = eR Jzg = gR.  

This amounts to defining a renormalised photon field by 

GA~;=A, JZB; = B’. 

( 5 . 5 )  

We see that the renormalisation of these propagators can be absorbed into a renormali- 
sation of the charges at the vertices connected through these propagators. Both 
charges are renormalised in the same way due to vacuum polarisation. 

Once the contribution of vacuum polarisation to charge renormalisation has been 
defined in such a way as to absorb the photon-field renormalisation, the renormalisation 
of the mixed propagator is also bound to be the same as that of the (AA)  and (BB) 
propagators if we do not want to introduce counterterms that would spoil the Lorentz 
invariance. This is so since the A and B fields are essentially one field, the photon 
field. We turn now to the computation of the full mixed propagator in order to see 
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whether this renormalisation is sufficient to remove the infinity of the residue of the 
pole at k 2  = 0. 

The full mixed propagator (AB) denoted 0:'" includes the contributions 

+ J v G - h - -  
U ii 

(5.7) 

The three first terms give a contribution proportional to the tree mixed propagator 

(1 + C ( k 2 ) + D ( k 2 ) ) .  E wvpon "k I r  

k2(n k )  
- 

The last two terms are identically zero. The reason for that is that all graphs 
contributing to F ( k  2 ,  have an odd number of mixed propagators and so an odd number 
of E,vp ,nPku terms because of Furry's (1937) theorem. An odd number of E,.p,nPku 
cannot be contracted completely. One of them at least should survive the contractions. 
However, by the n-independence theorem, E cannot appear in the final answer for 
(T(J,K,)). So F ( k 2 )  is identically zero+. Since F ( k 2 )  is zero the mixed propagator is 
multiplicatively renormalisable and has the exact correction in order to have a finite 
residue at k 2  = 0 after renormalisation. We see that we could have defined the photon 
field and charge renormalisation starting from the mixed propagator. We also see 
that as happens with the ( A A )  and ( B B )  propagators the mixed propagator renormali- 
sation can be absorbed into equal renormalisation of the electric and magnetic charges 
at the vertices connected by the mixed propagator. If F ( k 2 )  were not zero a new 
term, - T w J ( k 2 ) / ( n  k)', would contribute to the full mixed propagator. 

We can now check that this definition of Z3 is the correct one and is consistent 
with the reduction formula for cutting external photon legs of Green functions in 
order to obtain S matrix elements. We consider a process in which, among other 
things happening, an external photon is attached to a charged-particle line. The 
reduction formula, as far as the photon leg is concerned, takes the form 

where V: = A , ,  V i  = B,, D-'Et is the inverse propagator as a 2 x 2  matrix and V:xt 
is a wavefunction for the V" field satisfying the equation 

D-' $V:G = O .  (5.10) 

The solution can be taken to be of the form exp( - ik * x If" I'  with fa " orthogonal to 
n w  and k" and f '  orthogonal to f 2 .  f' and f Z  are non-zero only if k 2  = 0 so that A 
and B really describe photons. Because the action of V,",, on the inverse propagator 
creates a zero at k = 0 only corrections to ( A A ) ,  ( B B )  and (AB)  propagators having 
a pole at k 2  = O can contribute to Z3. This guarantees that the string-dependent terms 
proportional to TJ(n * k ) 2  in the full (AA)  and (BB)  propagators do not contribute 
to vacuum polarisation, which is consistent with the definition we gave before. 

.+This argument is due to J Strathdee. 
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6. Proper vertices and fermion propagators 

We consider first the sum of proper vertex parts with an A-field external leg and two 
electrically charged external matter-field legs (figure 1). We regard it as embedded 
in a sum of larger graphs with all kinds of corrections to all orders and with their 
external legs cut and on-shell (figure 2). According to the theorem of n independence 
all string dependence from the latter sum of graphs drops. Since the sum of proper 
vertex parts of figure 1 contains all graphs to all orders we can replace all gauge boson 
propagators with full ones. We know that all n dependence of this full vertex will 
disappear as a part of the extensive cancellations that take place between the graphs 
contributing to figure 2. For example some n dependence in the vertex under 
consideration might cancel some n dependence in another part of the larger graph. 
With this justification we drop the T,,/(n 0 k ) 2  terms in the full (AA)  and (BB)  
propagators and the ~ , , , ~ , n ~ k ~  after all possible contractions of E have taken place, 
since contractions of this kind can leave n-independent pieces. Now, after neglecting 
terms that should cancel, the vertex reduces to a sum of n-independent QED-like 
graphs and so, just as in QED, when P‘ -+ P with P2 = m * (m is the mass of the fermion), 
they will have the form G- ly IL ,  where G is a constant. 

I 

i 
Figure 1. Figure 2. 

Analogous things happen in connection with the full fermion propagator. In fact 
there is a correspondence between graphs contributing to the fermion proper self- 
energy and the proper vertex part before and after neglecting n dependence that will 
cancel. This correspondence is the usual Ward identity. When the fermion line is 
on-shell the full propagator behaves, neglecting n dependence that will cancel, like 
H / ( p -  m ) .  The Ward identity guarantees that G = H. 

So in a sense the infinity of the vertex that survives the n cancellations will be 
cancelled by the infinities of the full nearby propagators that survive the n cancellations. 
In any on-shell sum of graphs to all orders and amputated according to the reduction 
formula the fermion propagators and the A-fermion-fermion vertices ‘renormalise’ 
each other and the infinities of the full gauge boson propagators are absorbed into 
charge renormalisation. This is exactly the situation in ordinary QED if we forget the 
lack of complications due to the string. 

Of course we should remember that we have already defined the wavefunction 
renormalisation for the full fermion propagator. It is an n -dependent &(n) that we 
have used in order to cut the n-dependent external fermion legs according to the 
reduction formula. After these legs are cut the S matrix becomes n independent and 
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the rest of the arguments are applicable. The two pictures that we have described, 
in external legs and inside the graph, approach each other if we adopt the following 
formal renormalisation definitions. The renormalised full i,bl propagator S ;R is defined 
by SiR = S \ /Z2(n )  with Si the unrenormalised full GI  propagator and the renormalised 
full proper A - G I  - by the 
relation r:R=Zzr;. The charges do not get any new renormalisation beyond that 
coming from vacuum polarisation. In this way we cut the external legs correctly, we 
do not introduce any additional charge renormalisation as happened inside the graphs 
and we do not destroy the balance of infinities between the vertex and the nearby 
propagators. 

These results could have been obtained formally by applying the Ward identity 
relating the proper vertex and the fermion proper self-energy while ignoring the n 
dependence. The result would be the old Z1 = Z 2  relation of QED (2, is the vertex 
renormalisation) which we saw to be effectively correct. 

The B - I / I ~  - 1,4~ vertex and 42 propagator can be treated in exactly the same way. 
Fermion mass renormalisation presents no problem. A renormalised mass can be 

defined by m R  = m +Sm and Sm can be fixed such that the pole of the full fermion 
propagator be found in the right place. 

A new complication that arises in this theory is the A - 42 - 42 and B - 41 - 41 
vertices. These vertices do not exist in tree graphs but are created in higher orders. 
If these proper vertices are overall divergent and need an overall subtraction, the 
theory is in trouble since we have no counterterms for them. Fortunately, gauge and 
charge conjugation symmetries save it. Graphs contributing to the B - CL1 - proper 
vertex parts are like those of figure 3. 

The Ward identity relates the sum of these graphs when P = P’ and on-shell to 
the derivative of the graph of figure 4 which is zero by Furry’s (1937) theorem. This 
means that we do not need an overall subtraction of this proper vertex at zero 
momentum transfer to the photon. These proper vertices will therefore be treated 
as skeletons, 

vertex r:R is related to the unrenormalised one 

, 

Figure 3. 

7. Subtraction and finiteness 

We consider the sum of all graphs to all orders contributing to a given physical process 
with the external legs cut and replaced with wavefunctions according to the reduction 
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Figure 4, 

formula and on-shell. We know that at this stage the n ’ s  cancel. We make the 
renormalisations described in the previous sections at the same time to all orders. 
The renormalisation constants are now multiple infinite power series in the coupling 
constants with coefficients depending on each other. In QED we get something like 
that to all orders but with the important difference that we can start from lower orders 
and construct the whole series in steps. Here we cannot say the same since at this 
stage we only know that the n cancellation occurs only when we sum an infinite series 
of graphs, and so we have to subtract the theory that results after this cancellation. 
Also in QED each graph either is primitively divergent and needs an overall subtraction, 
or is not and is finite given that in both cases all self-energy and proper vertex part 
insertions are made finite in a previous step. Here the difference is that there is no 
previous step. All steps have to be taken at the same time. 

If we have a look at the Feynman rules of the Zwanziger theory we can see that 
they give rise to graphs with the same structure as in QED and with the same kind of 
infinities. In this theory we also have Ward identities of the same form as in QED. 
These two facts guarantee that one subtraction as described is enough to make the 
theory finite. The complication of this theory is due to the fact that we have, in finite 
orders, infinities that need counterterms with tensor structure different from the terms 
present in the Lagrangian, because of the n dependence, and not to the presence of 
worse (let us say quadratic) infinities. After the n cancellation counterterms of this 
kind are no longer needed. 

8. Lorentz invariance of the subtracted theory 

According to the renormalisation program discussed in the previous sections we 
renormalise each vector boson propagator by dividing withan n -independent constant 
Z3, and both charges by multiplying the bare ones with JZ,. Each fermion propagator 
is renormalised by dividing with an n -dependent constant Z z ( n  ). Multiplication with 
the same constant renormalises the vertex of two fermion lines and one line of the 
vector field coupling to this fermion. There is also a mass counterterm. 

Among all these renormalisation constants only the wavefunction renormalisation 
of the fermions is n -dependent. This should be so in order to remove the n-dependent 
external leg correctiom and leave the S matrix n -independent. By renormalising the 
corresponding vertices, multiplying them with the inverse of this n -dependent constant, 
we make sure that the whole subtraction scheme does lead to a Lorentz-invariant 
subtracted theory. 
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9. Charge renormalisation and Dirac’s quantisation condition 

With the definitions J Z e  = e R  and Jzg = g R  we keep eR  and g R  finite and fixed 
and the whole cut-off dependence goes to the bare charges e and g. But the bare 
charges satisfy Dirac’s quantisation condition 

eg = 21rii i = o ,  *1, * 2  , . . . .  (9.1) 

The proof of n cancellation of the S matrix uses this condition in an unavoidable 
way, and the whole subtraction is based on this cancellation. We also want to keep 
this condition for the renormalised charges if we want the renormalised theory to give 
reasonable predictions (Dirac 1931). Both these requirements can be satisfied if the 
bare charges go to infinity as the cut-off goes to infinity. We believe that this is not 
an absurd assumption given our experience with QED. In this case we require that 
the renormalised charges satisfy the condition and we also leave the bare ones to go 
to infinity in such a way that they also satisfy the condition. This can be done if we 
introduce a discrete cut-off which is allowed to take only those values for which eg/27r 
is an integer. In a sense we renormalise the integer present in Dirac’s condition and 
let the bare fi go to infinity through integer values. If it should happen, for some 
reason that we cannot explain, that the infinities cancel and the bare charges remain 
finite the theory would still make sense if Z 3  is a ratio of appropriate integers. 

10. The expansion in closed fermion loops 

Up to this point we have been considering sums of graphs to all orders because our 
subtraction program was based on the n cancellation. It is true nevertheless that the 
n cancellation theorem asserts something even stronger, namely that this cancellation 
takes place even if we do not sum all the graphs contributing to a given process to 
all orders, but only all graphs with a given number of closed fermion loops and all 
radiative corrections (Brandt et a1 1979). Everything we have said using the sum of 
graphs to all orders carries through if we consider the sum of graphs with a fixed 
number of closed fermion loops and all radiative corrections. The only reason we did 
not do it from the beginning is that, in our opinion, the argument to all orders can 
be presented in an easier way. Of course now the contributions to the renormalisation 
constants will be restricted. 

It should be noted that the expansion in closed fermion loops is not a reasonable 
one since the number of closed fermion loops does not have much to do with the size 
of the contribution. However, it is technically satisfying that each sector of the theory 
which is Lorentz invariant is subtractable. 

11. Remarks 

(1) If in the quasi-static limit of the charge-monopole scattering a low-energy 
theorem is true saying that the whole amplitude reduces to the graph with one mixed 
propagator exchanged between the physical (renormalised) charges, then, since the 
answer should be n-independent (like the whole amplitude), it must be exactly zero 
given that F = 0. This would be a prediction of the theory in agreement with the 
classical result that a static charge does not feel the magnetic field. 
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(2) In order to avoid misunderstandings we would like to stress again the assump- 
tions we have made which we believe are very reasonable. (a) The infinite summation 
and the removal of the regulators are interchangeable, (b) the string-dependent terms 
proportional to TJ(n - k)2  in the full gauge boson propagators will cancel completely 
in spite of the infinite sums of graphs involved in the cancellation procedure and (c) 
the n cancellation respects the Ward identities. 

(3) We have covered only the case of spin-; particles with only one type of charge. 
The only difference, as far as we can see, that might arise from the inclusion of dyons 
is the F term in the full mixed propagator. This F would still be zero if independent 
electric and magnetic charge conjugation is a symmetry. We have not dealt with the 
spin-0 matter-field case. 

(4) Everything we have discussed in this paper involves sums of an infinite number 
of graphs and so new techniques have to develop in order to extract any information 
from this theory. All the complications seem to arise from the presence of the string 
that breaks the manifest Lorentz invariance of the Zwanziger Lagrangian. Over the 
last few years much attention has been paid to the lattice formulation of gauge theories 
(Wilson 1974) which provides a means of non-perturbative treatment. The lattice 
formulation sacrifices explicit Lorentz invariance but this does not seem to be so 
important in our theory since it does not have it anyway. That is why we believe it 
is not so crazy to write down a lattice version of Zwanziger’s action that yields the 
correct continuum Zwanziger action in the ‘naive’ limit of zero lattice spacing. It is 
possible that if the theory is solved on the lattice and the correct quantum continuum 
limit is taken using renormalisation group techniques, the full quantum theory will 
be string independent. 

In the lattice version the gauge fields live on the links of the lattice. Anv means 
that the object A lives on the link between the site n and the site n + 3  where 3 is 
the unit vector in the v direction. In our notation a is the lattice spacing and we have 
chosen the string as a unit vector along the time axis. We will confine ourselves to 
one fermion with both types of charge. We define the following symbols. 

The lattice action that we propose is 

i i 
I = -- 1 sin(2fno,) sin(2&,oW) +- 1 sin(2hno,) sin(2fnou) 

8eg ncr 8eg nu 



Infinity subtraction in a theory of charges and monopoles 145 

+ % C C  & , , + , ~ ( 1 + ~ , ) 4 n  exp(-2iagBn,). 
n i r  

This lattice action has the symmetries 

(i) II/, + exp(2iy .e 14, Gn +exp(-2iyne)cCr,, An, -*An, - - ~ n  )/U 

(ii) --f exp(2izng)II/, Jn  + exp( - 2izng)Gn B n p  +Bn, - IZ n c ;  - Z n ) / a  

(iii) aeA,, + aeA,,, + T 

(iv) agB,, + agB,, + T .  

In order to get the naive continuum limit we assume that when Q + O ,  $,, = 
(a3 /2f )”*4(na)  and A,, =A,(na)  with na = x. We expand in powers of a keeping 
only terms up to order a 4  (higher powers will not survive the a + 0 limit) and using 
5 d4x = a4Xn we get Zwanziger’s action in Euclidean space. 
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